Small Sample Size Face Recognition using Random Quad-Tree based Ensemble Algorithm

نویسندگان

  • Cuicui Zhang
  • Xuefeng Liang
  • Takashi Matsuyama
چکیده

Certain applications such as person re-identification in camera network, surveillance photo verification, forensic identification etc. suffer from a small sample size (SSS) problem severely. Conventional face recognition methods face a great challenge on SSS as the trained feature space is overfitted to the small training set. Interest in combination of multiple base classifiers to solve the SSS problem has sparked renewed research efforts in ensemble methods. In this paper, we propose a novel Random Quad-Tree based ensemble algorithm (R-QT) to address the SSS problem. In contrast to other methods confining the ideas on limited data, R-QT enlarges the training data to obtain more diverse base classifiers. Moreover, R-QT encodes not only discriminant features but also the geometric information across the face region, which further improves the recognition accuracy. Results on five standard face databases demonstrate the effectiveness of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Learning-Based Ensemble Framework for Small Sample Size Face Recognition in Multi-Camera Networks

Multi-camera networks have gained great interest in video-based surveillance systems for security monitoring, access control, etc. Person re-identification is an essential and challenging task in multi-camera networks, which aims to determine if a given individual has already appeared over the camera network. Individual recognition often uses faces as a trial and requires a large number of samp...

متن کامل

Ensemble of M5 Model Tree Based Modelling of Sodium Adsorption Ratio

This work reports the results of four ensemble approaches with the M5 model tree as the base regression model to anticipate Sodium Adsorption Ratio (SAR). Ensemble methods that combine the output of multiple regression models have been found to be more accurate than any of the individual models making up the ensemble. In this study additive boosting, bagging, rotation forest and random subspace...

متن کامل

Ensemble LDA for Face Recognition

Linear Discriminant Analysis (LDA) is a popular feature extraction technique for face image recognition and retrieval. However, It often suffers from the small sample size problem when dealing with the high dimensional face data. Two-step LDA (PCA+LDA) [1–3] is a class of conventional approaches to address this problem. But in many cases, these LDA classifiers are overfitted to the training set...

متن کامل

Application of ensemble learning techniques to model the atmospheric concentration of SO2

In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...

متن کامل

Tree-based Ensemble Classifiers for High-dimensional Data

Building a classification model from thousands of available predictor variables with a relatively small sample size presents challenges for most traditional classification algorithms. When the number of samples is much smaller than the number of predictors, there can be a multiplicity of good classification models. An ensemble classifier combines multiple single classifiers to improve classific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013